Heat capacity change for ribonuclease A folding
نویسندگان
چکیده
منابع مشابه
Heat capacity of protein folding.
We construct a Hamiltonian for a single domain protein where the contact enthalpy and the chain entropy decrease linearly with the number of native contacts. The hydration effect upon protein unfolding is included by modeling water as ideal dipoles that are ordered around the unfolded surfaces, where the influence of these surfaces, covered with an "ice-like" shell of water, is represented by a...
متن کاملEarly folding intermediate of ribonuclease A.
Pulsed hydrogen exchange (2H-1H) is used to characterize the folding process of ribonuclease A (disulfide bonds intact). The results show one principal early folding intermediate (I1), which is formed rapidly after the start of folding and whose proton-exchange properties change with the time of folding. All probes that are hydrogen bonded within the beta-sheet of native ribonuclease A are prot...
متن کاملHeat capacity changes associated with nucleic acid folding.
Whereas heat capacity changes (DeltaCPs) associated with folding transitions are commonplace in the literature of protein folding, they have long been considered a minor energetic contributor in nucleic acid folding. Recent advances in the understanding of nucleic acid folding and improved technology for measuring the energetics of folding transitions have allowed a greater experimental window ...
متن کاملAre turns required for the folding of ribonuclease T1?
Ribonuclease T1 (RNase T1) is a small, globular protein of 104 amino acids for which extensive thermodynamic and structural information is known. To assess the specific influence of variations in amino acid sequence on the mechanism for protein folding, circularly permuted variants of RNase T1 were constructed and characterized in terms of catalytic activity and thermodynamic stability. The dis...
متن کاملHeat capacity of folding of proteins corrected for disulfide cross-links.
The heat capacities (DeltaC(p,f)) for the temperature-induced folding of proteins: barnase, lysozyme T4, papain, trypsin, ribonuclease T1, chymotrypsin, lysozyme and ribonuclease A have been calculated from the change in solvent accessible surface area between the native state and extended polypeptide chain. To visualize the effect of disulfide cross-links on molar heat capacity, loops of varyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Protein Science
سال: 1999
ISSN: 0961-8368,1469-896X
DOI: 10.1110/ps.8.7.1500